
Modeling Guidelines for Code Generation

R2011b

How to Contact MathWorks

www.mathworks.com

comp.soft-sys.matlab

Newsgroup

Web

www.mathworks.com/contact TS.html Technical Support

suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Modeling Guidelines for Code Generation

© COPYRIGHT 2010-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2010	Online only	New for Version 1.0 (Release 2010b)
April 2011	Online only	Revised for Version 1.1 (Release 2011a)
September 2011	Online only	Revised for Version 1.2 (Release 2011b)

Contents

Г	Introduc	tion
1	Motivation	1-2
Γ	Block Consideration	ions
ı	cgsl_0101: Zero-based indexing	2-2
	cgsl_0102: Evenly spaced breakpoints in lookup tables	2-4
	cgsl_0103: Precalculated signals and parameters	2-5
	cgsl_0104: Modeling global shared memory using data stores	2-8
	cgsl_0105: Modeling local shared memory using data stores	2-12
	Modeling Pattern Considerati	ions
	cgsl_0201: Eliminate redundant state blocks	3-2
	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals	3-8

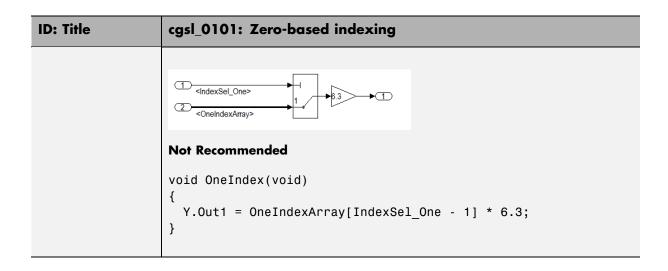
	cgsl_0204: Vector and bus signals crossing into atomic subsystems	3-10
	cgsl_0205: Signal handling for multirate models	3-14
	cgsl_0206: Data integrity and determinism in multitasking models	3-16
a 1	Configuration Parameter Considerati	ons
4	Configuration Parameter Considerati	ons
4	Configuration Parameter Consideration Configuration of Code generation objectives for code efficiency	ons

Introduction

Motivation

MathWorks intends this document for engineers developing models and generating code for embedded systems using Model-Based Design with MathWorks® products. The document focus is on model settings, block usage, and block parameters that impact simulation behavior or code generation.

This document does not address model style or development processes. For more information about creating models in a way that improves consistency, clarity, and readability, see the "MathWorks Automotive Advisory Board Control Algorithm Modeling Guidelines Using MATLAB®, Simulink®, and Stateflow®". Development process guidance and additional information for specific standards is available with the IEC Certification Kit (for IEC 61508 and ISO 26262) and DO Qualification Kit (for DO-178B) products.

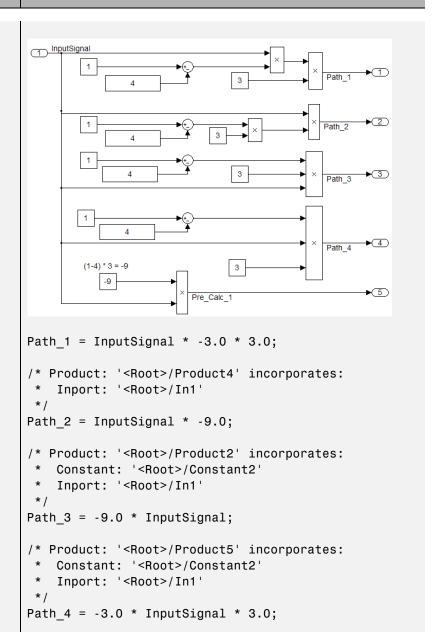

Disclaimer While adhering to the recommendations in this document will reduce the risk that an error is introduced during development and not be detected, it is not a guarantee that the system being developed will be safe. Conversely, if some of the recommendations in this document are not followed, it does not mean that the system being developed will be unsafe.

Block Considerations

- "cgsl_0101: Zero-based indexing" on page 2-2
- "cgsl_0102: Evenly spaced breakpoints in lookup tables" on page 2-4
- "cgsl_0103: Precalculated signals and parameters" on page 2-5
- "cgsl_0104: Modeling global shared memory using data stores" on page 2-8
- "cgsl_0105: Modeling local shared memory using data stores" on page 2-12

cgsl_0101: Zero-based indexing

ID: Title	cgsl_	cgsl_0101: Zero-based indexing			
Description		Use zero-based indexing for blocks that require indexing. To set up zero-based indexing, do one of the following:			
	A	Select block parameter Use zero-based indexing for the Index Vector block.			
	В	Set block parameter Index mode to Zero-based for the following blocks:			
		• Assignment			
		Selector			
		For Iterator			
Notes	The C	language uses zero-based indexing.			
Rationale	A, B	Use zero-based indexing for compatibility with integrated C code.			
	A, B	B Results in more efficient C code execution. One-based indexing requires a subtraction operation in generated code.			
See Also	"hisl_	"hisl_0021: Consistent vector indexing method"			
Last Changed	R201	R2011b			
Examples					
		2 <indexsel_zero> 1 <zeroindexarray> 3 3 1</zeroindexarray></indexsel_zero>			
	Recommended				
	{	<pre>ZeroIndex(void) Out5 = 3.0 * ZeroIndexArray[IndexSel_Zero];</pre>			

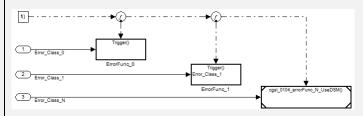

cgsl_0102: Evenly spaced breakpoints in lookup tables

ID: Title	cgsl_0	cgsl_0102: Evenly spaced breakpoints in lookup tables			
Description	When you use Lookup Table and Prelookup blocks,				
	A	With <i>non-fixed-point data types</i> , use evenly spaced data breakpoints for the input axis			
	В	With <i>fixed-point data types</i> , use power of two spaced breakpoints for the input axis			
Notes	_	y-spaced breakpoints can prevent generated code from including on operations, resulting in faster execution.			
Rationale	A	Improve ROM usage and execution speed.			
	В	Improve execution speed.			
		 When compared to unevenly-spaced data, power-of-two data can Increase data RAM usage if you require a finer step size Reduce accuracy if you use a coarser step size 			
		Compared to an evenly-spaced data set, there should be minimal cost in memory or accuracy.			
Model Advisor Checks	Embe	Embedded Coder > "Identify questionable fixed-point operations"			
See Also		"Formulation of Evenly Spaced Breakpoints" in the Simulink documentation			
Last Changed	R2010b				

cgsl_0103: Precalculated signals and parameters

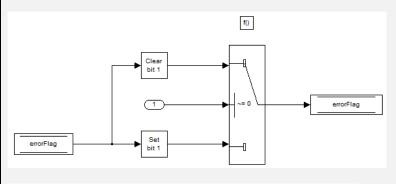
ID: Title	cgsl_0	103: Precalculated signals and parameters
Description	Precale the foll	culate invariant parameters and signals by doing one of
	A	Manually precalculate the values
	В	Enable the following model optimization parameters: • Optimization > Simulation and code generation > Inline parameters
		Optimization > Code generation > Signals > Inline invariant signals
Notes	param minimithe nucases, stored. limitat	culating variables can reduce local and global memory and improve execution speed. If you select Inline neters and Inline invariant signals, the code generator izes the number of run-time calculations by maximizing mber calculations completed before runtime. In some this can lead to a reduction in the number of parameters. However, the algorithms the code generator uses have ions. In some cases, the code is more compact if you te the values outside of the Simulink environment. This prove model efficiency, but can reduce model readability.
Rationale	A, B	Precalculate data, outside of the Simulink environment, to reduce memory requirements of a system and improve run-time execution.
Last Changed	R2010l	0
Examples	equiva	following model, all four paths are mathematically lent. However, due to algorithm limitations, the number time calculations for the paths differs.

cgsl_0103: Precalculated signals and parameters **ID: Title**


ID: Title	cgsl_0103: Precalculated signals and parameters
	<pre>/* Product: '<root>/Product6' incorporates: * Constant: '<root>/Constant3' * Inport: '<root>/In1' */ Pre_Calc_1 = -9.0 * InputSignal;</root></root></root></pre>
	To maximize automatic precalculation, add signals at the end of the set of equations.
	Inlining data reduces the ability to tune model parameters. You should define parameters that require calibration to allow calibration. For more information, see "Parameters" in the Simulink® Coder TM documentation.

cgsl_0104: Modeling global shared memory using data stores

ID: Title	cgsl_0104: Modeling global shared memory using data stores	
Description		using data store blocks to model shared memory across le models:
	A	In the Configuration Parameters dialog box, on the Diagnostics pane, set Data Validity > Data Store Memory Block > Duplicate data store names to error for all the models in the hierarchy
	В	Define the data store using a Simulink Signal or MPT Signal object
	C	Do not use Data Store Memory blocks in any of the models
Notes	If multiple Data Store blocks use the same data store name within a model, then Simulink interprets each instance of the data store as having a unique local scope.	
unint local		e diagnostic Duplicate data store names to help detect nded identifier reuse. For models intentionally using ata stores, set the diagnostic to warning. Verify that itentional data stores are included.
	Merge blocks, used in conjunction with subsystems operating in a mutually exclusive manor, provide a second method of modeling global data across multiple models.	
Rationale	A, B, C	Promotes a modeling pattern where a single consistent data store is used across all models and a single global instance is created in the generated code.


ID: Title	cgsl_0104: Modeling global shared memory using data stores
See Also	• "hisl_0013: Usage of data store blocks"
	• "hisl_0015: Usage of Merge blocks"
	• "cgsl_0302: Diagnostic settings for multirate and multitasking models"
	• "cgsl_0105: Modeling local shared memory using data stores"
Last Changed	R2011b
Examples	The following examples illustrate the use of data stores as global shared memory. The data store is used to model a global fault flag. A data store is required because the flag can be set in multiple functions and used in the same execution step. The top model contains three subsystems, each utilizing a data store memory. The data store is defined using a mpt.Signal object.
	mpt.Signal: errorFlag
	Data type: uint16 ▼ >>
	Complexity: real ▼
	Dimensions: 1 Dimensions mode: Fixed ▼
	Sample time: -1 Sample mode: Sample based ▼
	Minimum: [] Maximum: []
	Initial value: 0 Units: Error Flag
	Code generation options
	Storage class: Global (Custom) Custom attributes
	Memory section: Default ▼
	Header file: importData.h
	Owner: cgsl_0104_top
	Definition file: importData.c
	Persistence level: 1

ID: Title cgsl_0104: Modeling global shared memory using data stores

Recommended

In this example, there are no Data Store Memory blocks. The resulting code uses the same global variable for the full model.


```
void cgsl_0104_top_ErrorFunc_0(void)
{
    if (Error Class_0) {
        errorFlag = (uint16_T) (~((uint16_T) (((uint16_T) (~errorFlag)) | ((uint16_T) 1U))));
    } else {
        errorFlag = (uint16_T) (errorFlag | ((uint16_T) 1U));
    }
}
```

Not Recommended

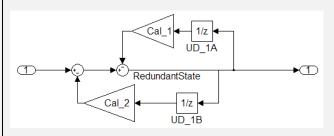
In this example, a Data Store Memory block is added into the Model block subsystem. The model subsystem uses a local version of the data store. The Atomic Subsystem use a different version.

ID: Title cgsl_0104: Modeling global shared memory using data stores f() errorFlag Clear ErrorFunc_N bit 9 Atomic subsystem errorFlag Set errorFlag bit 9 rtMdlrefDWork mr_cgsl_0104_erro mr_cgsl_0104_errorF_MdlrefDWork; void mr_cgsl_0104_errorFunc_N_UseDSM(const_boolean_T_*rtu_Error_Class_N) rtDW mr cgsl 0104 errorFunc N U *localDW = & (mr cgsl 0104 errorF MdlrefDWork.rtdw); if (*rtu_Error_Class_N) { localDW->errorFlag = (uint16_T) (~((uint16_T) (((uint16_T) (~localDW->errorFlag)) | ((<u>uint16_T</u>)512U))); $\texttt{localDW-} \texttt{>} \texttt{errorFlag} \; = \; (\underbrace{\texttt{uint16} \; \texttt{T}}) \; (\texttt{localDW-} \texttt{>} \texttt{errorFlag} \; \mid \; (\underbrace{\texttt{uint16} \; \texttt{T}}) \; \texttt{512U}) \,) \, ;$

cgsl_0105: Modeling local shared memory using data stores

ID: Title	cgsl_(store	0105: Modeling local shared memory using data s	
Description	When	using data store blocks as local shared memory:	
	A	Explicitly create the data store using a Data Store Memory block.	
	В	Deselect the block parameter option Data store name must resolve to Simulink signal object.	
	C	Consider following a naming convention for local Data Store Memory blocks.	
Notes	uninte local o	Use the diagnostic Duplicate data store names to help detect unintended identifier reuse. For models intentionally using local data stores, set the diagnostic to warning. Verify that only intentional data stores are included.	
	genera they a data s	store blocks are realized as global memory in the ated code. If they are not assigned a specific storage class, are included in the DWork structure. In the model, the store is scoped to the defining subsystem and below. In enerated code, the data store has file scope.	
Rationale	A, B	Data store block is treated as a local instance of the data store	
	C	Provides graphical feedback that the data store is local	
See Also	• "cgs	sl_0104: Modeling global shared memory using data res"	
		sl_0302: Diagnostic settings for multirate and ltitasking models"	
	• "his	sl_0013: Usage of data store blocks"	

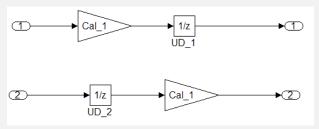
ID: Title	cgsl_0105: Modeling local shared memory using data stores
Last Changed	R2011b
Examples	In some instances, such as a library function, reuse of a local data store is required. In this example the local data store is defined in two subsystems.
	1 Out1 Input_1 2 Out2
	2 Out3 Out4 Out4
	localFlag DSM_Loc_1
	1 Out1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	The instance of localFlag is in scope within the subsystem LocalDataStore_1 and its subsystems.
	/* Block signals and states (auto storage) for system ' <root>' */ typedef struct { real T localFlag;</root>


ID: Title	cgsl_0105: Modeling local shared memory using data stores
	In the generated code, the data stores are part of the global DWork structure for the model. Embedded coder automatically assigns them unique names during the code generation process.

Modeling Pattern Considerations

- "cgsl_0201: Eliminate redundant state blocks" on page 3-2
- "cgsl_0202: Usage of For, While, and For Each subsystems with vector signals" on page 3-8
- "cgsl_0204: Vector and bus signals crossing into atomic subsystems" on page 3-10
- "cgsl_0205: Signal handling for multirate models" on page 3-14
- "cgsl_0206: Data integrity and determinism in multitasking models" on page 3-16

cgsl_0201: Eliminate redundant state blocks


ID: Title	cgsl_0201: Eliminate redundant state blocks		
Description	When preparing a model for code generation,		
	A Remove redundant Unit Delay and Memory blocks.		
Rationale	A Redundant Unit Delay and Memory blocks use additional global memory. Removing the redundancies from a model reduces memory usage without impacting model behavior.		
Last Changed	R2010b		
Example	ConsolidatedState_2 Cal_1 UD_3		
	Recommended: Consolidated Unit Delays		
	<pre>void Reduced(void) { ConsolidatedState_2 = Matrix_UD_Test - (Cal_1 * DWork.UD_3_DSTATE + Cal_2 * DWork.UD_3_DSTATE); DWork.UD_3_DSTATE = ConsolidatedState_2; }</pre>		

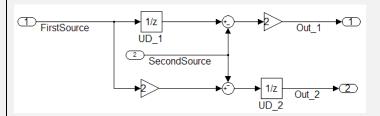
Not Recommended: Redundant Unit Delays

```
void Redundent(void)
{
   RedundantState = (Matrix_UD_Test - Cal_2 * DWork.UD_1B_DSTATE) - Cal_1 *
        DWork.UD_1A_DSTATE;
   DWork.UD_1B_DSTATE = RedundantState;
   DWork.UD_1A_DSTATE = RedundantState;
}
```

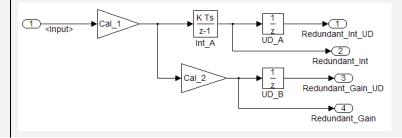
Unit Delay and Memory blocks exhibit commutative and distributive algebraic properties. When the blocks are part of an equation with one driving signal, you can move the Unit Delay and Memory blocks to any position in the equation without changing the result.

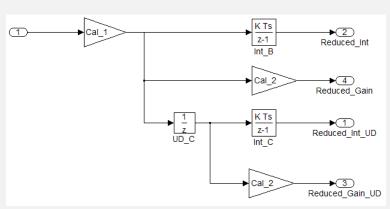
For the top path in the preceding example, the equations for the blocks are:

 $3 \text{ Out}_1(t) = \text{In}_1(t-1) * \text{Cal}_1$


For the bottom path, the equations are:

1 Out_2(t) =
$$UD_2(t) * Cal_1$$

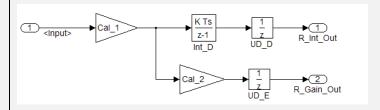

$$2 UD_2(t) = In_2(t-1)$$


3 Out
$$2(t) = In 2(t-1) * Cal 1$$

In contrast, if you add a secondary signal to the equations, the location of the Unit Delay block affects the result. As the following example shows, the location of the Unit Delay block affects the results due the skewing of the time sample between the top and bottom paths.

In cases with a single source and multiple destinations, the comparison is more complex. For example, in the following model, you can refactor the two Unit Delay blocks into a single unit delay.

From a black box perspective, the two models are equivalent. However, from a memory and computation perspective, differences exist between the two models.

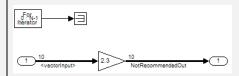

```
real T rtb Gain4;
rtb Gain4 = Cal 1 * Redundant;
Y.Redundant Gain = Cal 2 * rtb Gain4;
Y.Redundant Int = DWork.Int A;
Y.Redundant Int UD = DWork.UD A;
Y.Redundant Gain UD = DWork.UD B;
DWork.Int A = 0.01 * rtb Gain4 + DWork.Int A;
DWork.UD A = Y.Redundant Int;
DWork.UD B = Y.Redundant Gain;
real T rtb Gain1;
real T rtb UD C;
rtb Gain1 = Cal 1 * Reduced;
rtb UD C = DWork.UD C;
Y.Reduced Gain UD = Cal 2 * DWork.UD C;
Y.Reduced Gain = Cal 2 * rtb Gain1;
Y.Reduced Int = DWork.Int B;
Y.Reduced Int UD = DWork.Int C;
DWork.UD C = rtb Gain1;
```

```
DWork.Int_B = 0.01 * rtb_Gain1 + DWork.Int_B;
DWork.Int_C = 0.01 * rtb_UD_C + DWork.Int_C;
}

{
    real_T rtb_Gain4_f;
    real_T rtb_Int_D;
    rtb_Gain4_f = Cal_1 * U.Input;
    rtb_Int_D = DWork.Int_D;
    Y.R_Int_Out = DWork.UD_D;
    Y.R_Gain_Out = DWork.UD_E;
    DWork.Int_D = 0.01 * rtb_Gain4_f + DWork.Int_D;
    DWork.UD_D = rtb_Int_D;
    DWork.UD_E = Cal_2 * rtb_Gain4_f;
}
```

In this case, the original model is more efficient. In the first code example, there are three bits of global data, two from the Unit Delay blocks (DWork.UD_A and DWork.UD_B) and one from the discreate time integrator (DWork.Int_A). The second code example shows a reduction to one global variable generated by the unit delays (Dwork.UD_C), but there are two global variables due to the redundant Discreate Time Integrator blocks (DWork.Int_B and DWork.Int_C). The Discreate Time Integrator block path introduces an additional local variable (rtb_UD_C) and two additional computations.

By contrast, the refactored model (second) below is more efficient.

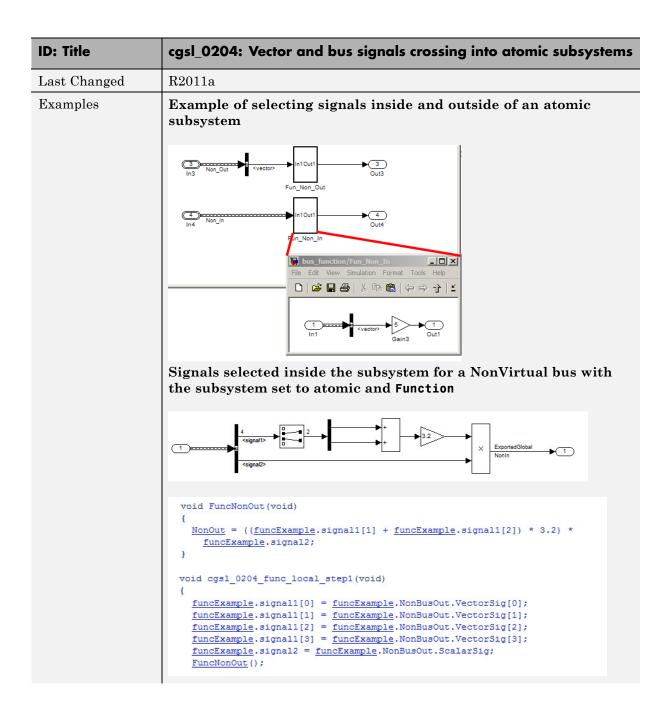

```
1 <Input>
                               Int E
                                        Gain_Out
  real T rtb Gain4 f:
  real T rtb Int D;
  rtb Gain4 f = Cal 1 * U.Input;
  rtb Int D = DWork.Int D;
  Y.R Int Out = DWork.UD D;
  Y.R Gain Out = DWork.UD E;
  DWork.Int D = 0.01 * rtb Gain4 f + DWork.Int D;
  DWork.UD D = rtb Int D;
  DWork.UD E = Cal 2 * rtb Gain4 f;
}
{
  real_T rtb_UD_F;
  rtb UD F = DWork.UD F;
  Y.Gain Out = Cal 2 * DWork.UD F;
  Y.Int Out = DWork.Int E;
  DWork.UD_F = Cal_1 * U.Input;
  DWork.Int_E = 0.01 * rtb_UD_F + DWork.Int_E;
}
The code for the refactored model is more efficient because no branches from
the root signal have a redundant unit delay.
```

cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

ID: Title	cgsl_0202: Usage of For, While, and For Each subsystems with vector signals	
Description	When developing a model for code generation,	
	A Use For, While, and For Each subsystems for calculations that require iterative behavior or operate on a subset (frame) of data.	
	B Avoid using For, While, or For Each subsystems for basic vector operations.	
Rationale	A, B Avoid redundant loops.	
See Also	"Loop unrolling threshold" in the Simulink documentation	
	• MathWorks Automotive Advisor Board guideline db_0117: Simulink patterns for vector signals	
Last Changed	R2010b	
Examples	The recommended method for preceding calculation is to place the Gain block outside the For Subsystem. If the calculations are required as part of a larger algorithm, you can avoid the nesting of for loops by using Index Vector and Assignment blocks.	
	For 0: N-1 Iterator: N-1 10 10 10 10 10 RecommendedOut 1 RecommendedOut	
	Recommended	
	<pre>for (s1_iter = 0; s1_iter < 10; s1_iter++) { RecommendedOut[s1_iter] = 2.3 * vectorInput[s1_iter]; }</pre>	

ID: Title cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

A common mistake is to embed basic vector operations in a For, While, or For Each subsystem. The following example includes a simple vector gain inside a For subsystem, which results in unnecessary nested for loops.


Not Recommended

```
for (s1_iter = 0; s1_iter < 10; s1_iter++) {
   for (i = 0; i < 10; i++) {
     NotRecommendedOut[i] = 2.3 * vectorInput[i];
   }
}</pre>
```

cgsl_0204: Vector and bus signals crossing into atomic subsystems

ID: Title	cgsl_	cgsl_0204: Vector and bus signals crossing into atomic subsystems		
Description	When working with a bus or vector signal, where only part of the signal is used in an Atomic subsystem,			
	A	scope. It can be used t	es applies to signals wit o determine which parts asage: Note Virtual bus	s of the signal to select
			Signals selected outside subsystem results in	Signal selected inside subsystem results in
		Virtual Bus	No data copies	No data copies
		Non-Virtual Bus	A copy of all signals are placed in the global Block I/O structure	No data copies
		Vector	No data copies	No data copies
		Reusable Function		
			Signals selected outside subsystem results in	Signal selected inside subsystem results in
		Virtual Bus	No data copies, only the selected elements are passed into the function	No data copies, only the selected elements are passed into the function
		Non-Virtual Bus	A copy of the full bus is placed into the global Block I/O structure, only the	No data copies; the full bus is passed in by reference.

ID: Title	cgsl	_0204: Vector and bu	s signals crossing into	atomic subsystems
			elements used in the function are passed.	
		Vector	No data copies; only the vector elements used in the subsystem are passed into the function.	No data copies; only the vector elements used in the subsystem are passed into the function.
		Model Reference		
			Signals selected outside subsystem results in	Signal selected inside the subsystem results in
		Virtual Bus	No data copies	Full bus copied; full bus passed into the function.
		Non-Virtual Bus	Full bus copied; full bus passed into the function.	No data copies; full bus passed into the function
		Vector	No data copies; selected only the vector elements used in the subsystem are passed into the function.	No data copies; full vector passed by reference
		If the subsystem is se	t to Inline, no data copi	es occur.
Rationale	A	Minimize ROM requir	rements.	

ID: Title

cgsl_0204: Vector and bus signals crossing into atomic subsystems

In this example the full bus is copied to the global variable *funcExample* even though only 3 of the signals from the bus are used. **Reusable** function example

```
47
     void cgsl 0204 reuse local step1(void)
48
    {
49
      real_T rtb_signal1[4];
      real T rtb signal2;
51
      ReuseVirtOut(reuse p.SigC1[1], reuse p.SigC1[2], reuse p.SigC2);
      ReuseVirtIn(reuse p.SigC4[1], reuse p.SigC4[2], reuse p.SigC3);
5.3
      rtb_signal1[0] = reuse_p.NonBusOut.VectorSig[0];
      rtb_signal1[1] = reuse_p.NonBusOut.VectorSig[1];
55
56
      rtb_signal1[2] = reuse_p.NonBusOut.VectorSig[2];
57
      rtb_signal1[3] = reuse_p.NonBusOut.VectorSig[3];
      rtb_signal2 = reuse_p.NonBusOut.ScalarSig;
58
      ReuseNonOut(rtb_signal1[1], rtb_signal1[2], rtb_signal2);
      ReuseNonIn (&reuse_p.NonBusIn);
60
      ReuseVectIn(reuse p.VectOut o[1], reuse p.VectOut o[3], reuse p.VectOut o[5]);
62
      ReuseVectOut(reuse_p.VectIn_j[1], reuse_p.VectIn_j[3], reuse_p.VectIn_j[5]);
63 }
```

- Line 53 corresponds to a reusable function with a virtual bus selection inside of the atomic subsystem. Only the signals used by the function are passed into the function
- Lines 54 through 59 show a nonvirtual bus with signals selected outside of the atomic subsystem. Copies of the data are placed into global storage <code>rtb_*</code>, again only the data used by the function is passed
- Line 60 shows a nonvirtual bus with data selected inside of the atomic subsystem. The full bus is passed into the subsystem
- Line 61 shows the vector selected inside the atomic subsystem case. Only the signals used inside of the subsystem are passed into the function.

cgsl_0205: Signal handling for multirate models

ID: Title	cgsl_0205: Signal handling for multirate models		
Description	For multirate models, handle the change in operation rate in one of two ways:		
	A	At the destination block, Insert a Rate Transition.	
	В	Set the parameter Solver > Automatically handle rate transition for data transfer to either Always or Whenever possible.	
Rationale	A,B	Following this guideline ensures the proper handling of data operating at different rates.	
Note	Setting the parameter Solver > Automatically handle rate transition for data transfer with the setting to Whenever possible requires inserting a Rate Transition block in locations indicated by Simulink. Setting the parameter Solver > Automatically handle rate transition for data transfer to Always allows Simulink to automatically handle all rate transitions by inserting a Rate Transition block. The following exceptions apply:		
	• The insertion of a Rate Transition block requires rewiring the block diagram.		
	 Multiple Rate Transition blocks are required: The blocks' sample times are not integer multiples of each other The blocks use different sample time offsets One of the rates is asynchronous 		
	• Ar	n inserted Rate Transition block can have multiple valid configurations.	
	For t	hese cases, manually insert a Rate Transition block or blocks.	
		aWorks does not recommend using Unit Delay and Zero Order Hold as for handling rate transitions.	

ID: Title	cgsl_0205: Signal handling for multirate models
Last Changed	R2011a
Examples	Incorrect:
	In this example, the Rate Transition block is inserted at the source, not at the destination of the signal. The model fails to update because the two destination blocks (Gain and Sum) run at different rates. To fix this error, insert Rate Transition blocks at the signal destinations and remove Rate Transition blocks from the signal sources. Failure to remove the Rate Transition blocks is a common modeling pattern that might result in errors and inefficient code.
	3 SampleTime = 1/100 SampleTime = 1/100 SampleTime = 1/100 SampleTime = 1/100
	9,81 4 SampleTime = 1/200
	Correct:
	In this example, the rate transition is inserted at the destination of the signal.
	32.1 SampleTime = 1/100 SampleTime = 1/100 SampleTime = 1/100 SampleTime = 1/100
	9.81 2 SampleTime = 1/200

cgsl_0206: Data integrity and determinism in multitasking models

ID: Title	cgsl_	cgsl_0206: Data integrity and determinism in multitasking models		
Description	opera	nultitasking models that are deployed with a preemptive (interruptible) ating system, protect the integrity of selected signals by doing one e following:		
	A	Select the Rate Transition block parameter Ensure data integrity during data transfer.		
	В	For Inport blocks in Function Called subsystems, select the block parameter Latch input for feedback signals of function-call subsystem outputs.		
	To pr	rotect selected signal determinism , do one of the following:		
	С	Select the Rate Transition block parameter Ensure deterministic data transfer (maximum delay).		
	D	• Select the model parameter Solver > Automatically handle rate transition for data transfer.		
		• Set the model parameter Solver > Deterministic data transfer to either Whenever possible or Always.		
Rationale	A,B, C,D	Following this guideline protects data against possible corruption of preemptive (interruptible) operating systems.		
Note	Multitasking systems with a non-preemptive operating system do not require data integrity or determinism protection. In this case, always clear the parameters Ensure data integrity during data transfer and Ensure deterministic data transfer .			
	execu	ring data integrity and determinism requires additional memory and ation time. To reduce this additional expense, evaluate all signals to mine the level of protection that they require.		
Prerequisites	cgsl_0205:Signal handling for multirate models			

ID: Title	cgsl_0206: Data integrity and determinism in multitasking models
See Also	Rate Transition
	• "Data Transfer Problems"
Last Changed	R2011a

Configuration Parameter Considerations

- "cgsl_0301: Prioritization of code generation objectives for code efficiency" on page 4-2
- "cgsl_0302: Diagnostic settings for multirate and multitasking models" on page 4-3

cgsl_0301: Prioritization of code generation objectives for code efficiency

ID: Title	cgsl_0301: Prioritization of code generation objectives for code efficiency		
Description		itize code generation objectives for code efficiency by using the Code ration Advisor.	
	A	Assign priorities to code (ROM, RAM, and Execution efficiency) efficiency objectives.	
	В	Select the relative order of ROM, RAM, and Execution efficiency based on application requirements.	
	C	Configure the Code Generation Advisor to run before generating code by setting Check model before generating code on the Code Generation pane of the Configuration Parameters dialog box to On (proceed with warnings) or On (stop for warnings).	
Notes	gener	del's configuration parameters provide control over many aspects of rated code. The prioritization of objectives specifies how configuration meters are set when conflicts between objectives occur.	
	initia check parar more	itizing code efficiency objectives above safety objectives may remove dization or run-time protection code (for example, saturation range king for signals out of representable range). Review the resulting meter configurations to verify that safety requirements are met. For information about objective tradeoffs for each model parameter, see dication Considerations" in the Embedded Coder TM documentation.	
Rationale	A, B, C	When you use the Code Generation Advisor, configuration parameters conform to the objectives that you want and they are consistently enforced.	
See also	"Set Objectives — Code Generation Advisor Dialog Box" in the Simulin Coder documentation		
	• "hi	Inange a Configuration Set" in the Simulink documentation isl_0055: Prioritization of code generation objectives for high-integrity stems"	
Last Changed	R201	0b	

cgsl_0302: Diagnostic settings for multirate and multitasking models

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models
Description	For multirate models using either single tasking or multitasking , set to either warning or error the following diagnostics:
	• Diagnostics > Sample Time > Single task rate transition
	• Diagnostics > Sample Time > Enforce sample time specified by Signal Specification blocks
	• Diagnostics > Data Validity > Merge Block > Detect multiple driving blocks executing at the same time step
	For multitasking models, set to either warning or error the following diagnostics:
	• Diagnostics > Sample Time > Multitask task rate transition
	• Diagnostics > Sample Time > Multitask conditionally executed subsystem
	Diagnostics > Sample Time > Tasks with equal priority
	If the model contains Data Store Memory blocks, set to either Enable all as warnings or Enable all as errors the following diagnostics:
	• Diagnostics > Data Validity > Data Store Memory Block > Detect read before write
	• Diagnostics > Data Validity > Data Store Memory Block > Detect write after read
	• Diagnostics > Data Validity > Data Store Memory Block > Detect write after write
	• Diagnostics > Data Validity > Data Store Memory Block > Multitask data store
Rationale	Setting the diagnostics improves run-time detection of rate and tasking errors.

ID: Title	cgsl_0302: Diagnostic settings for multirate and multitasking models	
See Also	• "Diagnostics Pane: Solver"	
	• "hisl_0013: Usage of data store blocks"	
Last Changed	2011a	